A new generation tree for permutations, preserving the number of fixed points

نویسندگان

  • Philippe Duchon
  • Romaric Duvignau
چکیده

We describe a new uniform generation tree for permutations with the specific property that, for most permutations, all of their descendants in the generation tree have the same number of fixed points. Our tree is optimal for the number of permutations having this property. We then use this tree to describe a new random generation algorithm for derangements, using an expected n+O(1) calls to a random number generator. Another application is a combinatorial algorithm for exact sampling from the Poisson distribution with parameter 1. Résumé. Nous décrivons un nouvel arbre de génération uniforme pour les permutations, ayant la propriété que, pour la majorité des permutations, tous leurs descendants ont le même nombre de points fixes; notre arbre est optimal en ce sens. Grâce à cet arbre, nous obtenons un nouvel algorithme de génération aléatoire uniforme de dérangements, algorithme qui nécessite, en moyenne, n+O(1) appels à un générateur de nombres aléatoires; ainsi qu’une méthode combinatoire de simulation exacte de la loi de Poisson de paramètre 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preserving the Number of Cycles of Length k in a Growing Uniform Permutation

The goal of this work is to describe a uniform generation tree for permutations which preserves the number of k-cycles between any permutation (except for a small unavoidable subset of optimal size) of the tree and its direct children. Moreover, the tree we describe has the property that if the number of k-cycles does not change during any k consecutive levels, then any further random descent w...

متن کامل

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Probability Generating Functions for Sattolo’s Algorithm

In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...

متن کامل

Common fixed point results for graph preserving mappings in parametric $N_b$-metric spaces

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of graph preserving mappings in parametric $N_b$-metric spaces. As some consequences of this study, we obtain several important results in parametric $b$-metric spaces, parametric $S$-metric spaces and parametric $A$-metric spaces. Finally, we provide some illustrative examples to ...

متن کامل

Statistics on Pattern-avoiding Permutations

This thesis concerns the enumeration of pattern-avoiding permutations with respect to certain statistics. Our first result is that the joint distribution of the pair of statistics ‘number of fixed points’ and ‘number of excedances’ is the same in 321-avoiding as in 132-avoiding permutations. This generalizes a recent result of Robertson, Saracino and Zeilberger, for which we also give another, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014